Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Basic Research in Ca...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Basic Research in Cardiology
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Basic Research in Cardiology
Other literature type . 1992
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inotropic actions of eicosanoids

Authors: Karsten Schrör; Th. Hohlfeld;

Inotropic actions of eicosanoids

Abstract

Eicosanoids (prostaglandins, leukotrienes, thromboxane A2 and other metabolites of C-20 polyunsaturated fatty acids) have numerous effects in the cardiovascular system. Direct inotropic actions have been repeatedly described, but appear in only very few cases to be due to direct modification of the inotropic state of the heart. Specific eicosanoid receptors have been identified on the surface of the sarcolemmal membrane. Signal transduction pathways in the cardiac myocyte involve the adenylate cyclase/cAMP system or stimulation of the phospholipase C/IP3 pathway. In general, concentrations of eicosanoids which affect myocardial contractility are higher as the response is less predictable than the effects on platelet function or vessel tone. Therefore, eicosanoid-induced extracardiac effects may be superimposed to more direct changes in the contractile state of the intact heart in vitro or in vivo. In contrast to non-failing hearts, there is a significant improvement of the contractile function in contractile failure ("stunning", ischemia, congestive heart failure) by vasodilating prostaglandins (e.g., PGI2). The mechanism of this action is still unknown.

Keywords

Heart Failure, Inositol Phosphates, Myocardium, Coronary Disease, Heart, Receptors, Cell Surface, Intracellular Membranes, In Vitro Techniques, Myocardial Contraction, Animals, Eicosanoids, Homeostasis, Humans, Calcium, Nucleotides, Cyclic, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!