Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Basic Research in Ca...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Basic Research in Cardiology
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Basic Research in Cardiology
Other literature type . 1994
versions View all 2 versions
addClaim

Oxidative substrate metabolism during postischemic reperfusion

Authors: R, Lerch;

Oxidative substrate metabolism during postischemic reperfusion

Abstract

Myocardial reperfusion occurs in a number of clinical conditions which include unstable angina, thrombolytic therapy or percutaneous transluminal angioplasty during evolving myocardial infarction and cardioplegic arrest during cardiac surgery. The transition from the ischemic to the postischemic state of the myocyte is associated with a number of functional, morphological, ionic and metabolic alterations. This article reviews available information on metabolism of glucose and palmitate in postischemic myocardium. Overall oxidative metabolic rate recovers rapidly after the onset of reperfusion. In some studies myocardial oxygen consumption during early reperfusion has been disproportionately high compared to contractile function. Oxygen consumption may recover transiently even in myocardium that undergoes irreversible injury. There exists some evidence indicating that cytoplasmic calcium overload may lead to increased energy expenditure during reperfusion. The relative contribution of fatty acids and glucose to oxidative metabolism during the first hour of reperfusion has been found either to be unchanged or to exhibit a shift toward increased glucose oxidation. Several observations suggest that glucose utilization may be essential during reperfusion for the survival of the myocardium.

Related Organizations
Keywords

Reference Values, Myocardium, Myocardial Ischemia, Animals, Humans, Myocardial Reperfusion, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!