
doi: 10.1007/bf00655852
The effect of the micelles on the dynamic surface tension of micellar surfactant solutions is studied experimentally by means of the maximum bubble pressure method. Different frequencies of bubbling ranging approximately between 1 and 30 s−1 are applied. The time dependence of the surface tension is calculated using a dead time correction. Water solutions of two types of surfactants with different concentrations are investigated: sodium dodecyl sulfate and nonylphenol polyglycol ether. The surface tension relaxes more quickly in the presence of micelles. The characteristic times of relaxation of the surface tension seem to be in the millisecond range. The time constants observed experimentally are explained in terms of the theory of surfactant diffusion affected by micellization kinetics.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
