Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pflügers Archiv - Eu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pflügers Archiv - European Journal of Physiology
Article . 1973 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrotonic spread in the sinoatrial node of the rabbit heart

Authors: Felix I. M. Bonke;

Electrotonic spread in the sinoatrial node of the rabbit heart

Abstract

Using a relatively large extracellular suction electrode (see previous paper for a detailed description of the method) a number of fibers of the sinoatrial node of the rabbit were simultaneously polarized. Although the geometry of the sinoatrial node is very complex and a three-dimensional spread of current is expected, it turned out that with this mode of polarization the current spread in the sinoatrial node was more or less as would be expected in a one-dimensional cable. The space constant was 465±55 μ (n=10). With this relatively small value, electrotonic interaction between all parts of the sinoatrial node is not possible. The functional implications of this finding for the sinoatrial node are discussed.

Related Organizations
Keywords

Electric Conductivity, Action Potentials, Animals, Heart Atria, Rabbits, In Vitro Techniques, Extracellular Space, Microelectrodes, Electric Stimulation, Sinoatrial Node

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Average
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?