Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pflügers Archiv - Eu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pflügers Archiv - European Journal of Physiology
Article . 1983 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Does water drag solutes through kidney proximal tubule?

Authors: B, Corman; A, Di Stefano;

Does water drag solutes through kidney proximal tubule?

Abstract

Coupling of salt and water movements across kidney proximal tubules was studied in the presence of an induced transepithelial osmotic water flux. Convoluted proximal tubules from rabbit kidney were perfused in vitro with a control solution, with or without 50 mM/l of mannitol or raffinose in the both. Osmolalities of the perfused and collected fluids as well as the net water flux Jv were measured in each experiment. The net solute flux Js was calculated from the difference between the amount of total solutes delivered and collected at each end of the tubule. No apparent net transepithelial solute movements were detected in the presence of an osmotic water flux when active solute transport was inhibited either by an external to of 26 degrees C or by ouabain in the bath. The water flux observed was similar to that calculated assuming that only water crossed the epithelium, and no streaming potential was measured, whether or not active transport was blocked. It is concluded that the osmotic water flux through kidney proximal tubule does not drag a significant amount of solutes, probably because of the absence of convective solvent flux. This suggests the existence of different pathways for water and salt movement.

Keywords

Kidney Tubules, Proximal, Raffinose, Body Water, Osmolar Concentration, Animals, Mannitol, Rabbits, In Vitro Techniques, Epithelium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!