Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Probability Theory a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Probability Theory and Related Fields
Article . 1967 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1967
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Infinitely divisible stochastic processes

Authors: Lee, P. M.;

Infinitely divisible stochastic processes

Abstract

It often happens that a stochastic process may be approximated by a sum of a large number of independent components no one of which contributes a significant proportion of the whole. For example the depth of water in a lake with many small rivers flowing into it from distant sources, or the point process of calls entering a telephone exchange (considered as the sum of a number of point processes of calls made by individual subscribers) may approximately fulfil these hypotheses. In the present work we formulate and solve the problem of characterizing stochastic processes all of whose finite-dimensional distributions are infinitely divisible. Although some of our results could be derived from known theorems on probabilities on general algebraic structures, many could not and it seems preferable to take the vector-valued infinitely divisible laws as our starting point. We emphasize that an infinitely divisible process (in our sense) on the real line is not necessarily a decomposable process in the sense of Levy (cf. § 4) though decomposable processes are particular cases. In § 1 a representation theorem for non-negative (and possibly infinite) stochastic processes is derived, while an analogous theorem in the real-valued case is to be found in § 2. § 3 is devoted to the statement of a “central limit theorem” and the investigation of some of the properties of infinitely divisible processes. The investigation is continued in § 4 by an examination of processes on the real line giving, for example, a representation theorem under weak conditions for infinitely divisible processes which are a.s. sample continuous. Finally in § 5 a study is made of infinitely divisible point processes and random measures.

Keywords

probability theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!