
doi: 10.1007/bf00463481
pmid: 3036036
The rapid phase of fructose-1,6-bisphosphatase (FBPase) inactivation following glucose addition to starved yeast cells [reported previously] is inhibited on addition of 10 mM chloroquine (CQ) at about pH 8. This inhibition of inactivation was shown to be due to the prevention of phosphorylation of the enzyme. CQ was also found to inhibit general protein phosphorylation in the yeast cells. Glycolysis, as observed by changes in intracellular glucose-6-phosphate and extracellular glucose and ethanol concentrations, was shown to be significantly inhibited in cells treated with CQ. Similarly, a decrease in ATP concentrations was observed. However, during the early stages of phosphorylation of FBPase, levels of ATP were similar in cells containing CQ as in those without CQ. Thus, decrease in ATP levels is not thought to be significantly responsible for the inhibition of protein phosphorylation. However, the phosphorylating activity of cyclic AMP-dependent protein kinases is inhibited in vitro by relatively low concentrations of CQ. Thus, prevention of protein phosphorylation by CQ is believed to be due to inhibition of protein kinases in yeast cells.
Fungal Proteins, Chloroquine, Electrophoresis, Polyacrylamide Gel, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Phosphorylation, Protein Kinase Inhibitors, Fructose-Bisphosphatase
Fungal Proteins, Chloroquine, Electrophoresis, Polyacrylamide Gel, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Phosphorylation, Protein Kinase Inhibitors, Fructose-Bisphosphatase
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
