Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2013
versions View all 2 versions
addClaim

Gas permeability of plant cuticles

Oxygen permeability
Authors: K J, Lendzian;

Gas permeability of plant cuticles

Abstract

Cuticles from the adaxial surface of Citrus aurantium L. leaves and from the pericarp of Lycopersicon esculentum L. and Capsicum annuum L. were isolated enzymatically and their oxygen permeability was determined. Isolated cuticles were mounted between a gaseous and an aqueous compartment with the physiological outer side of the membrane facing the gaseous compartment. Permeability for oxygen was characterized by permeability (P) and diffusion (D) coefficients. P and D were independent of the driving force (gradient of oxygen concentration) across the cuticle, thus, Henry's law was obeyed. P values for the diffusion of oxygen varied between 3·10(-7) (Citrus), 1.4·10(-6) (Capsicum), and 1.1·10(-6) (Lycopersicon) m·s(-1). Extraction of soluble lipids from the cuticles increased the permeability. By treating the cutin matrix and the soluble lipids as resistances in series, it could be demonstrated that the soluble lipids were the main resistance for oxygen permeability in Citrus cuticles. However, in Lycopersicon and Capsicum, both the cutin matrix and the soluble lipids determined the total resistance. P values were not affected by either the proton concentration (pH 3-9) or the cations (Na(+), Ca(2+)) present at the morphological inner side of the cuticles. It is concluded that the water content of cuticles does not affect the permeability properties for oxygen. Partition coefficients indicated a high solubility of oxygen in the cuticle of Citrus. The data suggest a solubility process in the cuticle of Citrus with respect to oxygen permeation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!