
doi: 10.1007/bf00411751
Homogeneous and isotropic turbulence has been discussed in the present paper. An attempt has been made to find the simplifying hypothesis for connecting the higher order correlation tensor with the lower ones. Starting from the Navier-Stokes equations of motion for an incompressible fluid and following the usual method of taking the averages, a differential equation in Q and X, the defining scalar of the second order correlation tensor Q x and the defining scalar of a third order isotropic tensor X ijk , has been derived. The tensor X ijk stands for a tensorial expression containing the derivatives of the third and the fourth order tensors. Then the hypothesis is used that X=F(Q), where F is an unknown function. To find the forms of F, Kolmogoroff's similarity principles have been used, and thus two forms for F(Q) corresponding to two regions of the validity of these principles have been deduced.
fluid mechanics
fluid mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
