Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 1970 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2014
versions View all 2 versions
addClaim

Microfibril orientation in plant cell walls

Authors: S C, Chafe; A B, Wardrop;

Microfibril orientation in plant cell walls

Abstract

The distribution of particles on the surface of the plasmalemma in the collenchyma of Apium graveolens was studied by the freeze-etching technique. The aim was to determine whether the distribution of particles was related to the known longitudinal or transverse orientation of cellulose microfibrils in different layers of the walls of these cells. Preliminary statistical studies have shown no obvious correlation between particle distribution and microfibril orientation although the distribution appeared uniform rather than random. Qualitatively, the particle distribution on the plasmalemma of differentiating xylem fibres of Eucalyptus maculata and of the cortical parenchyma of Avena sativa coleoptiles appeared to be similar to that observed on the plasmalemma of Apium. No correlation between the particle distribution and the microfibril orientation known to exist in the walls of these cells could be discerned.The orientation of microtubules in the cytoplasm of collenchyma cells of Apium graveolens was parallel to the microfibril orientation in many instances, but exceptions were noted. A possible interpretation for this variation is discussed. It is concluded that the microtubules are the structures which are most likely to be involved in determining microfibril orientation in the cell wall.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!