
doi: 10.1007/bf00366960
Relaxation processes in complex systems like polymers or other viscoelastic materials can be described by equations containing fractional differential or integral operators. In order to give a physical motivation for fractional order equations, the fractional relaxation is discussed in the framework of statistical mechanics. We show that fractional relaxation represents a special type of a non-Markovian process. Assuming a separation condition and the validity of the thermo-rheological principle, stating that a change of the temperature only influences the time scale but not the rheological functional form, it is shown that a fractional operator equation for the underlying relaxation process results.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 88 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
