Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chromosomaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chromosoma
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Chromosoma
Article . 1994 . Peer-reviewed
Data sources: Crossref
Chromosoma
Article . 1995
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The spindle pole body of yeast

Authors: Michael Snyder;

The spindle pole body of yeast

Abstract

Microtubule organizing centers play an essential cellular role in nucleating microtubule assembly and establishing the microtubule array. The microtubule organizing center of yeast, the spindle pole body (SPB), shares many functions and properties with those other organisms. In recent years considerable new information has been generated concerning components associated with the SPB, and the mechanism by which it duplicates. This article reviews our current view of the cytology and molecular composition of the SPB of the budding yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. Genetic studies in these organisms has revealed information about how the SPB duplicates and separates, and its roles during vegetative growth, mating and meiosis.

Related Organizations
Keywords

Centrosome, Fungal Proteins, Schizosaccharomyces, Microtubule Proteins, Saccharomyces cerevisiae, Microtubules, Models, Biological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?