Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Applied Physiology and Occupational Physiology
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Isovelocity investigation of the lengthening behaviour of the erector spinae muscles

Authors: C G, Sutarno; S M, McGill;

Isovelocity investigation of the lengthening behaviour of the erector spinae muscles

Abstract

The purpose of this study was to investigate the force-velocity (F/v) relationship for the erector spinae muscles in submaximal activation movements, with particular attention to their response during lengthening movements and at lower shortening contraction velocities. Dynamic models that predict lower back muscle forces require reasonable representations of the modulating effect of instantaneous velocity. Ten males were observed performing trunk flexion and extension in the sagittal plane under constant load. Contraction velocities were measured as the first derivative from a devise sensitive to changes in spine curvature, and controlled by a visual feedback system while a constant load was applied through a chest harness. The erector spinae exhibited a yielding phenomenon which causes an abrupt drop in force during constant velocity stretching under constant, submaximal, stimulation. The findings were consistent with previous isovelocity muscle lengthening experiments. Yielding appeared dependent on the level of load/activation supporting the theory of a "state-variable" F/v relationship. The eccentric behaviour of the lower erectors (L3) seemed independent of velocity and length, while that of the upper erectors (T9) showed a dependence on length. At lower concentric velocities, concavity in torque-velocity curves was noted after a "threshold" velocity. The findings of this study strongly reinforce the notion that the F/v length relationship is not a continuous hyperbolic relationship during muscle shortening and that the commonly modelled force augmentation effect of lengthening is incorrect, at least for submaximal activation of the extensors of the lower back.

Related Organizations
Keywords

Adult, Male, Back, Electromyography, Movement, Posture, Humans, Muscle, Skeletal, Models, Biological, Feedback, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!