Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chromosomaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chromosoma
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Chromosoma
Article . 1994 . Peer-reviewed
Data sources: Crossref
Chromosoma
Article . 1995
versions View all 3 versions
addClaim

Histone acetylation: facts and questions

Authors: P, Loidl;

Histone acetylation: facts and questions

Abstract

The DNA of eukaryotic cells is organized in a complex with proteins, either as interphase chromatin or mitotic chromosomes. Nucleosomes, the structural subunits of chromatin, have long been considered as static structures, incompatible with processes occurring in chromatin. During the past few years it has become evident that the histone part of the nucleosome has important regulatory functions. Some of these functions are mediated by the N-terminal core histone domains which contain sites for posttranslational modifications, among them lysine residues for reversible acetylation. Recent results indicate that acetylation and deacetylation of N-terminal lysines of nucleosomal core histones represent a means of molecular communication between chromatin and the cellular signal transduction network, resulting in heritable epigenetic information. Data on enzymes involved in acetylation and the pattern of acetylated lysine sites on chromosomes, as well as genetic data on yeast transcriptional repression, suggest that acetylation may lead to structural transitions as well as specific signalling within distinct chromatin domains.

Related Organizations
Keywords

Male, Saccharomyces cerevisiae Proteins, Chromosomal Proteins, Non-Histone, Lysine, Acetylation, Saccharomyces cerevisiae, Models, Biological, Chromatin, Histone Deacetylases, Nucleosomes, Fungal Proteins, Histones, Acetyltransferases, Gene Expression Regulation, Fungal, Animals, Drosophila, Protein Processing, Post-Translational, Histone Acetyltransferases, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!