Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Spine Journ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Spine Journal
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intervertebral disc degeneration

Authors: R D, Fraser; O L, Osti; B, Vernon-Roberts;

Intervertebral disc degeneration

Abstract

Disc degeneration in the human spine is a complex phenomenon characterised by biochemical change in the nucleus pulposus and inner annulus and the formation of clefts and fissures radiating from the central area of the disc towards the periphery. In addition, and probably independent of these phenomena, discrete defects in the outer annular attachement are seen which are likely to be due to mechanical stress and failure. The presence of stress tears in disc tissue and their failure to heal can initiate or accelerate the degeneration of the central component of the intervertebral disc. We postulate that discogenic pain may be linked to damage to the outer portion of the annulus fibrosus. Although it would seem logical to assume that discs with sustained high intradiscal pressure would be more prone to pain referred in the outer annular layers because of higher tensile strain, analysis of prospective studies has failed to confirm a relationship between typical pain reproduction at discography and high pressure values. It is concluded that, at present, the only consistent morphological changes present in patients with pain reproduction at discography are the presence of various annular defects involving the outer layers. Whether nerve ingrowth during attempts at repair of these defects is a consistent feature remains to be established.

Related Organizations
Keywords

Radiography, Animals, Humans, Pain, Intervertebral Disc Degeneration, Intervertebral Disc, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!