Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bulletin of Volcanol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bulletin of Volcanology
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structure, and origin by injection of lava under surface crust, of tumuli, ?lava rises?, ?lava-rise pits?, and ?lava-inflation clefts? in Hawaii

Authors: George P. L. Walker;

Structure, and origin by injection of lava under surface crust, of tumuli, ?lava rises?, ?lava-rise pits?, and ?lava-inflation clefts? in Hawaii

Abstract

Tumuli are positive topographic features that are common on Hawaiian pahoehoe lava flow fields, particularly on shallow slopes, and 75 measured examples are presented here to document the size range. Tumuli form by up-tilting of crustal plates, without any crustal shortening, and are thus distinguished from pressure ridges which are up-buckled by laterally directed pressure. The axial or star-like systems of deep clefts that characterize tumuli are defined here as “lava-inflation clefts”; their tips advanced into red-hot lava and they widened as uplift proceeded and while the lava crust was thickening. Flat-surfaced uplifts, formed like tumuli by injection of lava under a surface crust, were previously called pressure plateaus, but “lava rise” is proposed instead. The pits that abound among lava rises, previously attributed to collapse or subsidence, are generally formed because the lava around them rose, and the name “lava-rise pit” is proposed. Unique examples of tumuli and lava rises, from which lava drained out under a surface crust 1.5 to 2.5 m thick, are described from Kilauea caldera. These examples show that in tumuli and lava rises the crust floats on considerable bodies of fluid lava, and is able to do so because of its higher vesicle content: the fluid lava loses many of its gas bubbles during residence beneath the crust. The bulk densities of samples from tumuli show a general downward increase. The form of the density profile is consistent with the relationship that for any given crustal thickness the density of fluid lava closely matched the average density of that crust, suggesting that the lava was stably density-stratified. It is inferred that stable stratification was regulated by out-flows of the more vesicular lava fractions, loss of bubbles through the lava-inflation clefts, and entry of injected lava at its level of neutral buoyancy. Below the uppermost meter the downward decrease in vesicularity closely conforms with that expected by compression of a uniform mass of gas per unit mass of lava.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    258
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
258
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!