Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Genetics
Article . 1983 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Human Genetics
Article . 1983
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Eukaryotic DNA methylation

Authors: David Neil Cooper;

Eukaryotic DNA methylation

Abstract

Eukaryotic genomes contain 5-methylcytosine (5mC) as a rare base.5mC arises by postsynthetic modification of cytosine and occurs, at least in animals, predominantly in the dinucleotide CpG. The base is not distributed randomly in these genomes but conforms to a pattern. This pattern varies between taxa but appears to be inherited in a semi-conservative fashion. At the level of the genome, gross changes in the level of DNA methylation have been noted. This has encouraged speculation that the modification may play a role in cellular differentiation. Tissue-specific patterns of DNA methylation, predicted by various models of differentiation, have been found for most vertebrate genes so far examined. A correlation has emerged between the undermethylation of these regions and their transcription, but this is not always the case. While data for eukaryotic viral sequences are less equivocal, studies of this kind cannot in isolation distinguish between undermethylation being a cause or a consequence of gene activity. If it were a cause, it is probable that the demethylation of specific CpG sites would be a necessary yet not a sufficient condition for transcription to occur. The introduction of artificially methylated DNA sequences into individual eukaryotic cells by microinjection or transformation may provide the means to elucidate these questions in the future. In the meantime, the study of eukaryotic DNA methylation promises to contribute much to our understanding of the regulation of gene expression in these organisms.

Related Organizations
Keywords

DNA Replication, Base Composition, DNA Repair, Genes, Viral, Models, Genetic, Transcription, Genetic, Chromosome Mapping, Cell Differentiation, DNA, Methylation, Cytosine, Eukaryotic Cells, Gene Expression Regulation, Genes, Mutation, 5-Methylcytosine, Azacitidine, Animals, Humans, DNA (Cytosine-5-)-Methyltransferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!