Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Mathemati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Mathematical Biology
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A mathematical model of biological evolution

Authors: N. Ogita; Kazushige Ishii; Hirotsugu Matsuda;

A mathematical model of biological evolution

Abstract

In order to understand generally how the biological evolution rate depends on relevant parameters such as mutation rate, intensity of selection pressure and its persistence time, the following mathematical model is proposed: dNn(t)/dt = (mn(t) - mu)Nn(t) + muNn-1(t) (n = 0,1,2,3,...), where Nn(t) and mn(t) are respectively the number and Malthusian parameter of replicons with step number n in a population at time t and mean is the mutation rate, assumed to be a positive constant. The step number of each replicon is defined as either equal to or larger by one than that of its parent, the latter case occurring when and only when mutation has taken place. The average evolution rate defined by v infinity identical to lim t leads to infinity sigma infinity n = o nNn(t)/t sigma infinity n = o Nn(t) is rigorously obtained for the case (i) mn(t) = mn is independent of t (constant fitness model), where mn is essentially periodic with respect to n, and for the case (ii) mn(t) = s(-1) n+[t/tau] (periodic fitness model), together with the long time average -m infinity of the average Malthusian parameter -m identical to sigma infinity n = o mn(t)Nn(t)/sigma infinity n = o Nn(t). The biological meaning of the results is discussed, comparing them with the features of actual molecular evolution and with some results of computer simulation of the model for finite populations.

Related Organizations
Keywords

neutral theory, Models, Genetic, molecular evolution, Biological Evolution, Problems related to evolution, Dynamical systems and ergodic theory, non-Darwinian evolution, Mutation, neo-Darwinian evolution, Animals, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!