<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1007/bf00264472
handle: 11577/2522179
An attribute grammar (AG) is in reduced form if in all its derivation trees every attribute contributes to the translation. We prove that, eventhough AG are generally not in reduced form, they can be reduced, i.e., put into reduced form, without modifying their translations. This is shown first for noncircular AG and then for arbitrary AG. In both cases the reduction consists of easy (almost syntactic) transformations which do not change the semantic domain of the AG. These easy transformations are formalized by introducing the notion of AG interpretation as an extension to AG of the concept of context-free grammar form. Finally we prove that any general algorithm for reducing even the simple class of L-AG needs exponential time (in the size of the input AG) infinitely often.
grammar form, Formal languages and automata, transformations, reduced form
grammar form, Formal languages and automata, transformations, reduced form
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |