Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetologia
Article . 1981 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Diabetologia
Article . 1981
Diabetologia
Article . 2017
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Insulin and insulin receptors in rodent brain

Authors: Jesse Roth; Jana Havrankova; Jana Havrankova; Michael J. Brownstein;

Insulin and insulin receptors in rodent brain

Abstract

While insulin effects on the central nervous system (CNS) mediated through hypoglycaemia are well known, direct insulin effects on the CNS remain controversial. Recently, we found insulin receptors in all areas of the rat brain, with highest concentrations in the olfactory bulb, cerebral cortex and hypothalamus; all areas involved in feeding. Insulin receptors in brain were, by multiple criteria, similar to insulin receptors on classical target tissues for insulin, such as liver and fat. Insulin itself has been identified in the rat brain at concentrations on average ten times higher than in plasma. Highest concentrations were found in the olfactory bulb and hypothalamus. Brain insulin was indistinguishable from purified insulin by its behaviour in the radioimmunoassay, radioreceptor assay, bioassay and gel chromatography. In two experimental models representing extremes of plasma insulin concentrations (obese hyperinsulinaemic mice and diabetic insulinopenic rats) there were no significant changes in the concentration of insulin receptors in brain while liver receptors were modified in the expected way. This may reflect the protective influence of the blood-brain barrier on some special quality of brain insulin receptors. Insulin concentrations in brain were also unchanged in both models, which is probably indicative of the local synthesis of insulin. The role of insulin in the CNS is unknown. Besides well known metabolic actions of insulin, new roles can be postulated such as neurotransmission, neuromodulation and paracrine signalling.

Country
United States
Keywords

Mice, Genes:, Animals, Brain, Insulin, Endocrinology:, Receptors:, Receptor, Insulin, Organs:, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 10%
Top 1%
Top 10%
bronze
Related to Research communities