Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Brain R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Brain Research
Article . 1976 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Types of interneurons and their participation in the neuronal network of the medial geniculate body

Authors: A. Kiss; K. Majorossy;

Types of interneurons and their participation in the neuronal network of the medial geniculate body

Abstract

Three different types of interneurons can be separated in the Golgi picture, and many of their details can be identified under the electron microscope, in the medial geniculate body (MGB) of the cat: (1) typical short axon Golgi II. cells of the thalamic type, (2) somewhat larger Golgi type II cells with medium range axon, and (3) spidery neurogliform short axon cells. The most distinctive features of the two first types (1) and (2) are their irregular drumstick shape appendages, increasing in number as well as in length and irregularity of their stalks towards the periphery of the dendrites. These appendages form the vast majority of synaptic profiles in the aggregations of synaptic neuropil (glomeruli) of the nuclei, and they are both presynaptic and postsynaptic by the usual standards applied for the evaluation of the polarity of synapses. The characteristic beaded dendrites of the (3) neurogliform cell type can be recognised particulary easily in the electron microscopic picture. They are both presynaptic and postsynaptic in structural polarity. All identified process profiles of interneurons contain flattened (F-type) or pleomorphic synaptic vesicles. Membrane contacts, in which the interneurons appear to be presynaptic are either of the symmetric (Gray type II) or of an intermediate type. The membrane contacts of postsynaptic portions of the interneurons are usually of the asymmetric type (Gray type I) and the presynaptic profiles contain round (R-type) vesicles. The larger one have been shown already earlier to be derived from specific sensory (inferior collicular) afferents, while many of the smaller ones could be identified in the present study as being derived from cortico-geniculate descending pathways, arising from the auditory areas. Some of the synaptic contacts of the interneurons are apparently derived from other interneurons, the presynaptic profiles being often equivocal or more likely of axonal origin (all interneurons have clear axons in the Golgi picture). The occurrence of three distinct types of interneurons--probably all of inhibitory nature--the complexity in synaptic arrangement, and more particularly in the dendritic linkage of numerous synaptic sites does not favour such simple explanations as surround inhibition by forward or by backward inhibition, but suggests more sophisticated modes of impulse processing in the MGB.

Related Organizations
Keywords

Interneurons, Nerve Degeneration, Synapses, Cats, Animals, Geniculate Bodies, Axons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!