
doi: 10.1007/bf00235247
pmid: 964326
Three different types of interneurons can be separated in the Golgi picture, and many of their details can be identified under the electron microscope, in the medial geniculate body (MGB) of the cat: (1) typical short axon Golgi II. cells of the thalamic type, (2) somewhat larger Golgi type II cells with medium range axon, and (3) spidery neurogliform short axon cells. The most distinctive features of the two first types (1) and (2) are their irregular drumstick shape appendages, increasing in number as well as in length and irregularity of their stalks towards the periphery of the dendrites. These appendages form the vast majority of synaptic profiles in the aggregations of synaptic neuropil (glomeruli) of the nuclei, and they are both presynaptic and postsynaptic by the usual standards applied for the evaluation of the polarity of synapses. The characteristic beaded dendrites of the (3) neurogliform cell type can be recognised particulary easily in the electron microscopic picture. They are both presynaptic and postsynaptic in structural polarity. All identified process profiles of interneurons contain flattened (F-type) or pleomorphic synaptic vesicles. Membrane contacts, in which the interneurons appear to be presynaptic are either of the symmetric (Gray type II) or of an intermediate type. The membrane contacts of postsynaptic portions of the interneurons are usually of the asymmetric type (Gray type I) and the presynaptic profiles contain round (R-type) vesicles. The larger one have been shown already earlier to be derived from specific sensory (inferior collicular) afferents, while many of the smaller ones could be identified in the present study as being derived from cortico-geniculate descending pathways, arising from the auditory areas. Some of the synaptic contacts of the interneurons are apparently derived from other interneurons, the presynaptic profiles being often equivocal or more likely of axonal origin (all interneurons have clear axons in the Golgi picture). The occurrence of three distinct types of interneurons--probably all of inhibitory nature--the complexity in synaptic arrangement, and more particularly in the dendritic linkage of numerous synaptic sites does not favour such simple explanations as surround inhibition by forward or by backward inhibition, but suggests more sophisticated modes of impulse processing in the MGB.
Interneurons, Nerve Degeneration, Synapses, Cats, Animals, Geniculate Bodies, Axons
Interneurons, Nerve Degeneration, Synapses, Cats, Animals, Geniculate Bodies, Axons
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
