
doi: 10.1007/bf00230702
pmid: 2531680
Our objective was to determine if caudal ventral respiratory group (VRG) expiratory (E) neurons that drive abdominal expiratory motoneurons in the lumbar cord respond to intercostal and lumbar nerve afferent stimulation. Results showed that 92% of medullary E-neurons that were antidromically activated from the upper lumbar cord reduced their activity in response to stimulation of external and internal intercostal and lumbar nerve afferents. We conclude that afferent information from intercostal and abdominal muscle tendon organs has an inhibitory effect on caudal VRG E-neurons that drive abdominal expiratory motoneurons.
Medulla Oblongata, Respiration, Cats, Action Potentials, Animals, Intercostal Muscles, Neurons, Afferent, Electric Stimulation, Abdominal Muscles
Medulla Oblongata, Respiration, Cats, Action Potentials, Animals, Intercostal Muscles, Neurons, Afferent, Electric Stimulation, Abdominal Muscles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
