
doi: 10.1007/bf00180268
pmid: 8852558
We report the Soret absorption spectra (500-350 nm) of the cyanomet derivatives of human hemoglobin and horse myoglobin, in the temperature range 300-20 K and in two different solvents (65% v/v glycerol-water or 65% v/v ethylene glycol-water). In order to obtain information on stereodynamic properties of active site of the two hemeproteins, we perform an analysis of the band profiles within the framework of electron-vibrations coupling. This approach enables us to single out the various contributions to the spectral bandwidth, such as those arising from non-radiative decay of the excited electronic state (homogeneous broadening) and from the coupling of the electronic transition i) with high frequency modes (that determines the vibronic structure of the band) and ii) with a "bath" of low frequency modes (that is responsible for the temperature dependence of the experimental spectra). We discuss the relevant parameters and their temperature dependence and compare them with the ones already reported for other derivatives of the same hemeproteins in the same solvents. In particular, non-harmonic contributions to soft modes are found, for cyanomet derivatives, to be larger than those observed for liganded carbonmonoxy but smaller than those observed for unliganded deoxy derivatives. The reported data enable us to obtain information on the dependence of stereodynamic properties of the heme pocket upon iron oxidation state, dimensions of the exogenous ligand and composition of the external matrix.
Binding Sites, Iron, Cold Temperature, Spectrophotometry, Solvents, Animals, Humans, Horses, Metmyoglobin, Muscle, Skeletal, Oxidation-Reduction, Methemoglobin
Binding Sites, Iron, Cold Temperature, Spectrophotometry, Solvents, Animals, Humans, Horses, Metmyoglobin, Muscle, Skeletal, Oxidation-Reduction, Methemoglobin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
