Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification and isoprenylation of plant GTP-binding proteins

Authors: Stephen K. Randall; Dring N. Crowell; Brenda J. Biermann;

Identification and isoprenylation of plant GTP-binding proteins

Abstract

To identify isoprenylated plant GTP-binding proteins, Arabidopsis thaliana and Nicotiana tabacum cDNA expression libraries were screened for cDNA-encoded proteins capable of binding [32P]GTP in vitro. ATGB2, an Arabidopsis homologue of the GTP-binding protein Rab2, was found to bind GTP in vitro and to be a substrate for a geranylgeranyl:protein transferase (GGTase) present in plant extracts. The carboxyl terminus of this protein contains a -GCCG sequence, which has not previously been shown to be recognized by any prenyl:protein transferase (PTase), but which most closely resembles that isoprenylated by the type II GGTase (-XXCC, -XCXC, or -CCXX). In vitro geranylgeranylation of an Arabidopsis Rab1 protein containing a carboxyl-terminal-CCGQ sequence confirmed the presence of a type II GGTase-like activity in plant extracts. Several other proteins were also identified by in vitro GTP binding, including Arabidopsis and tobacco homologues of Rab11, ARF (ADP-ribosylation factor) and Sar proteins, as well as a novel 22 kDa Arabidopsis protein (ATG81). This 22 kDa protein had consensus GTP-binding motifs and bound GTP with high specificity, but its structure was not closely related to that of any known GTP-binding protein (it most resembled proteins within the ARF/Sar and G protein alpha-subunit superfamilies).

Keywords

Nicotiana, DNA, Complementary, Sequence Homology, Amino Acid, Molecular Sequence Data, Arabidopsis, Protein Prenylation, Sequence Analysis, DNA, Plants, Toxic, rab2 GTP-Binding Protein, GTP-Binding Proteins, RNA, Plant, Transferases, Amino Acid Sequence, Guanosine Triphosphate, Diterpenes, Gene Library, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!