<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1007/bf00020417
pmid: 24301569
A brief history of the discovery of photosynthetic phosphorylation by chloroplasts and bacterial chromatophores is presented. Arnon early introduced the terminology of 'Cyclic' and 'Non-cyclic photophosphorylation' and 'Cyclic' and 'Non-Cyclic electron transport' to the processes observed in illuminated chloroplasts. He made major contributions to the elucidation of these processes and stressed their great biological significance. Investigations of the electron transport components of chromatophores have led to the isolation, purification and crystallization of bacterial reaction centers. The development of three-dimensional molecular structures, and the characterization of their electron transfer components have provided a great deal of information about the early reactions of bacterial photosynthesis. The electron transfer schemes presented clearly support the 'cyclic' nature of light-induced electron transfer. Recent developments in the understanding of ATP synthesis in oxidative phosphorylation by mitochondria and in photophosphorylation by chloroplasts and bacterial chromatophores are discussed.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |