
The chloroplast genome consists of homogeneous circular DNA molecules. To date, the entire nucleotide sequences (120-190 kbp) of chloroplast genomes have been determined from eight plant species. The chloroplast genomes of land plants and green algae contain about 110 different genes, which can be classified into two main groups: genes involved in gene expression and those related to photosynthesis. The red alga Porphyra chloroplast genome has 70 additional genes, one-third of which are related to biosynthesis of amino acids and other low molecular mass compounds. Chloroplast genes contain at least three structurally distinct promoters and transcribe two or more classes of RNA polymerase. Two chloroplast genes, rps12 of land plants and psaA of Chlamydomonas, are divided into two to three pieces and scattered over the genome. Each portion is transcribed separately, and two to three separate transcripts are joined together to yield a functional mRNA by trans-splicing. RNA editing (C to U base changes) occurs in some of the chloroplast transcripts. Most edited codons are functionally significant, creating start and stop codons and changing codons to retain conserved amino acids.
Genome, Chloroplasts, Base Sequence, DNA, Plant, Molecular Sequence Data, DNA, Recombinant, Chromosome Mapping, Gene Expression, DNA, Plants, Genes, Plant, Gene Expression Regulation, Plant, RNA Editing, Genome, Plant
Genome, Chloroplasts, Base Sequence, DNA, Plant, Molecular Sequence Data, DNA, Recombinant, Chromosome Mapping, Gene Expression, DNA, Plants, Genes, Plant, Gene Expression Regulation, Plant, RNA Editing, Genome, Plant
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 570 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
