
In general a homogeneous space admits many invariant affine connections. Among these are certain connections which appear in many ways to be more natural than the others. We refer to the connections which K. Nomizu in [4] calls canonical affine connections of the first kind. When G is a compact connected Lie group and K a closed subgroup we called an invariant Riemannian metric on G/K, natural (in [2]) when it induced such a connection.
Riemannian manifolds, 22.00, 53.00
Riemannian manifolds, 22.00, 53.00
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
