Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Single Nucleotide Polymorphisms and Pharmacogenomics

Authors: Sabhiya Majid; Hilal Ahmad Wani; Iyman Rasool; Muneeb U. Rehman; Muneeb U. Rehman; Azher Arafah; Samia Rashid; +3 Authors

Single Nucleotide Polymorphisms and Pharmacogenomics

Abstract

Pharmaco-genomics determines the individual genetic mechanism for drug response and has the ability to transform tailored medication into clinical practice. A huge number of individuals die every year from adverse drug response since each person reacts differently to similar drug. The science of pharmaco-genomics has emerged as a potential discipline in the development of drugs and clinical medicine during the last several decades. It has offered a hope of protection for the patients against lethal health complications that arise from the adverse drug responses. The new medication approaches utilizing the science of pharmaco-genomics reduce the patient exposure to less or non-effective drugs or drugs with adverse effects. Same drugs have been reported to induce specific reactions in each individual owing to different nucleotide sequences in genes that encode the essential biological molecules such as drug-metabolizing enzymes, drug transporters, and drug targets. Single nucleotide polymorphisms (SNPs) are very helpful in determining the susceptibility of individuals to different diseases and drug reaction. These polymorphisms are the most prevalent in the genome of humans and account for 90% of genetic variance amongst individuals. Pharmaco-genomics may help in understanding the strong effects of inherited single gene variations on drug mobilization and action. The detection and characterization of SNPs related with disease risk and adverse drug response (ADR) is essential before using them as genetic tools. The credibility of SNP application in the diagnosis of diseases and possible ADR has been increased by the completion of HapMap project but still there are some challenges associated with it. The present chapter attempted to present the general role and effect of SNPs on pharmaco-genomics as well as their utility in clinical practice.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!