
In-depth analysis of the structure of the drug and its subsequent modification yield drugs with high affinity and increased receptor specificity with an improved pharmacokinetic profile. Modification of the parent molecule of catecholamines, called β-phenyl-ethyl-amine, provided orally active adrenergic bronchodilators, long-acting β2-adrenergic agonists, COMT-resistant catecholamines, and isomerism-based increased potency in adrenergic agonists. Similarly, alteration of the cyclo-pentano-perhydro-phenanthrene ring of steroid molecules delivered androgen, progestins, and estrogen with low first-pass metabolism, long-acting injectable steroids, and corticosteroids with negligible mineralocorticoid activity. In addition to this, manipulation of the structure of morphine resulted in a plethora of “opioid agonists and antagonists” that are used in clinics for various conditions. Minor alteration of “spacer” in the structure of antihistaminic molecules resulted in “nonsedative” antihistaminics. Therefore, SAR plays a vital role in the drug development process which ultimately determines the “success” or “failure” of the drug.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
