Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lattice QCD and Baryon-Baryon Interactions

Authors: Aoki, Sinya; Doi, Takumi;

Lattice QCD and Baryon-Baryon Interactions

Abstract

In this chapter, the current status on baryon-baryon interactions such as nuclear forces in lattice Quantum ChromoDynamics (QCD) is reviewed. In studies of baryon-baryon interactions in lattice QCD, the most reliable method so far is the potential method, proposed by the Hadrons to Atomic nuclei from Lattice QCD (HAL QCD) collaboration, whose formulation, properties and extensions are explained in detail. Using the HAL QCD potential method, potentials between nucleons (proton and neutron, denoted by $N$) in the derivative expansion have been extracted in various cases. The lattice QCD results shown in this chapter include a Leading Order (LO) central potential in the parity-even $NN(^1S_0)$ channel, LO central and tensor potentials in the parity-even $NN(^3S_1$-$^3D_1)$ channel, and a Next-to-Leading Order (NLO) spin-orbit potential as well as LO potentials in the parity-odd channels. Preliminary results at the almost physical pion and kaon masses, in addition to exploratory studies on three-nucleon potentials, are presented. Interactions between generic baryons including hyperons, made of one or more strange quarks as well as up and down quarks, have also been investigated. Universal properties of potentials between baryons become manifest in the flavor SU(3) symmetric limit, where masses of three quarks, up, down and strange, are all equal. In particular, it is observed that one bound state, traditionally called the $H$-dibaryon, appears in the flavor singlet representation of SU(3). A fate of the $H$ dibaryon is also discussed with flavor SU(3) breaking taken into account at the almost physical point. Finally, various kinds of dibaryons, bound or resonate states of two baryons, including charmed dibaryons, have been predicted by lattice QCD simulations at the almost physical point.

Comment: 29 pages and 14 figures, Contribution to "Handbook of Nuclear Physics" (Springer, 2023)

Keywords

High Energy Physics - Phenomenology, High Energy Physics - Lattice, Nuclear Theory

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green