Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ARUdA
Part of book or chapter of book . 2020
Data sources: ARUdA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ARUdA
Article . 2011
Data sources: ARUdA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunotoxicity of Nanoparticles

Authors: DI GIOACCHINO, Mario; PETRARCA, CLAUDIA; F. Lazzarin; DI GIAMPAOLO, LUCA; E. Sabbioni; BOSCOLO, Paolo; MARIANI COSTANTINI, Renato; +1 Authors

Immunotoxicity of Nanoparticles

Abstract

The interaction between NPs and immune system has been demonstrated, however, the data available are limited. Among all traits, i.s. hydrophilicity, lipophilicity, catalytic activity, composition, electronic structure, capacity to bind or coat surface species and solubility, the dimension, and consequently the surface area, seems to be the main factor that contribute to the interactions of NPs with biological tissues and immune system in particular. Certain NPs accumulate to regional lymph nodes, where they can be taken up and processed by dendritic cells, interact with self-proteins and, hence, modify their antigenicity and elicit altered immune responses and even autoimmunity. Other NPs may induce allergic sensitization, i.e. allergic contact dermatitis to Pd. In vitro studies demonstrated that NPs can modulate cytokine production toward Th1 (Pl, Pd, Ni, Co) or Th2 (Ti, mw and sw Carbon) production patterns. Some NPs have been linked to allergic sensitization, however, It is unlikely that NPs can act as a hapten inducing a specific IgE production, likely they can act as adjuvant and induce a specific pattern of cytokines, antibody and cells that favor allergic sensitization to environmental allergens. Furthermore, NPs demonstrated pro-inflammatory effects in the lung in experimental animal with increased expression on IL-1beta, MIP-1alpha, MCP-1, MIP-2, keratinocyte chemoattractant, TARC, GM-CSF, MIP-1alpha and activation of the stress-activated MAPKs p38 and JNKs. All considered, the available data suggest that through the elicitation of an oxidative stress mechanism, engineered NPs may contribute to pro-inflammatory disease processes in the lung, particularly allergy.

Country
Italy
Keywords

Immune System, Hypersensitivity, Animals, Cytokines, Humans, Nanoparticles, Pneumonia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 1%
gold
Related to Research communities