<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 30779010
The extracellular matrix (ECM) provides the environment for many cells types within the body and, in addition to the well recognised role as a structural support, influences many important cell process within the body. As a result, age-related changes to the proteins of the ECM have far reaching consequences with the potential to disrupt many different aspects of homeostasis and healthy function. The proteins collagen and elastin are the most abundant in the ECM and their ability to function as a structural support and provide mechanical stability results from the formation of supra-molecular structures. Collagen and elastin have a long half-life, as required by their structural role, which leaves them vulnerable to a range of post-translational modifications. In this chapter the role of the ECM is discussed and the component proteins introduced. Major age-related modifications including glycation, carbamylation and fragmentation and the impact these have on ECM function are reviewed.
Aging, Collagen, Protein Processing, Post-Translational, Elastin, Extracellular Matrix
Aging, Collagen, Protein Processing, Post-Translational, Elastin, Extracellular Matrix
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |