
pmid: 28815532
Viruses use synthetic mechanism and organelles of the host cells to facilitate their replication and make new viruses. Host's ATP provides necessary energy. Hepatitis C virus (HCV) is a major cause of liver disease. Like other positive-strand RNA viruses, the HCV genome is thought to be synthesized by the replication complex, which consists of viral- and host cell-derived factors, in tight association with structurally rearranged vesicle-like cytoplasmic membranes. The virus-induced remodeling of subcellular membranes, which protect the viral RNA from nucleases in the cytoplasm, promotes efficient replication of HCV genome. The assembly of HCV particle involves interactions between viral structural and nonstructural proteins and pathways related to lipid metabolisms in a concerted fashion. Association of viral core protein, which forms the capsid, with lipid droplets appears to be a prerequisite for early steps of the assembly, which are closely linked with the viral genome replication. This review presents the recent progress in understanding the mechanisms for replication and assembly of HCV through its interactions with organelles or distinct organelle-like structures.
Gene Expression Regulation, Viral, Organelles, Hepacivirus, Lipid Droplets, Virus Replication, Hepatitis C, Viral Proteins, Adenosine Triphosphate, Host-Pathogen Interactions, Animals, Humans, RNA, Viral, Energy Metabolism
Gene Expression Regulation, Viral, Organelles, Hepacivirus, Lipid Droplets, Virus Replication, Hepatitis C, Viral Proteins, Adenosine Triphosphate, Host-Pathogen Interactions, Animals, Humans, RNA, Viral, Energy Metabolism
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
