Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chaos in Nanofluidic Convection of CuO Nanofluid

Authors: Rashmi Bhardwaj; Saureesh Das;

Chaos in Nanofluidic Convection of CuO Nanofluid

Abstract

This paper deals with the nonlinear stability dynamics of nanofluid convection under magnetic and temperature variation for Copper Oxide (CuO) nanofluid, which is used as coolant in heat transfer applications. The system comprises a cavity in which the fluid layer is subjected to external magnetic field and heat exposure. The partial differential equations of conservation of momentum and energy are the governing equations, which are converted to a system of nonlinear differential equations. Using stability, phase portrait and time series analysis, the effect of magnetic field and temperature variation through Hartmann number and Rayleigh number on the chaotic CuO nanofluid convection is studied. It is observed that as the value of Hartman number increases, then the system enters into a stable phase. However, on increasing the Rayleigh number system becomes chaotic. Also, it is observed that by controlling the Rayleigh number chaos cannot be controlled but only on increasing the applied field the chaotic state in nanofluid convection can be controlled, which indicates towards a kind of magnetic cooling. It is concluded that as temperature varies the nanofluid convection exhibit chaotic motion which can be stabilized by applying magnetic field which has many applications in drug delivery, nano technology, environmental engineering, industrial engineering and in pharmaceutical industry.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!