Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2014 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RARs and MicroRNAs

Authors: Nervi, Clara; GRIGNANI, Francesco;

RARs and MicroRNAs

Abstract

MicroRNA MicroRNA s (miRNAs) are small noncoding RNAs acting as endogenous regulators of gene expression. Their discovery is one of the major recent breakthroughs in molecular biology. miRNAs establish a multiplicity of relationships with target mRNAs and exert pleiotropic biological effects in many cell physiological pathways during development and adult life. The dynamic nature of gene expression regulation by Retinoic Acid Retinoic acid (RA) is consistent with an extensive functional interplay with miRNA activities. In fact, RA regulates the expression of many different miRNAs, thus suggesting a relevant function of miRNAs in RA-controlled gene expression programmes. miRNAs have been extensively studied as targets and mediators of the biological activity of RA during embryonic development as well as in normal and neoplastic cells. However, relatively few studies have experimentally explored the direct contribution of miRNA function to the RA signalling pathway. Here, we provide an overview of the mechanistic aspects that allow miRNA biogenesis, functional activation and regulation, focusing on recent evidence that highlights a functional interplay between miRNAs and RA-regulated molecular networks. We report examples of tissue-specific roles of miRNAs modulated by RA in stem cell pluripotency maintenance and regeneration, embryonic development, hematopoietic and neural differentiation, and other biological model systems, underlining their role in disease pathogenesis. We also address novel areas of research linking the RA signalling pathway to the nuclear activity of miRNAs.

Country
Italy
Keywords

Pluripotent Stem Cells, Receptors, Retinoic Acid, Retinoic Acid; Acute Promyelocytic Leukemia; miRNA Gene; Retinoic Acid Treatment; Retinoic Acid Signaling, Embryonic Development, Cell Differentiation, Tretinoin, Embryo, Mammalian, Cell Differentiation; Embryo, Mammalian; Embryonic Development; Gene Expression Regulation; Humans; Leukemia, Myeloid, Acute; MicroRNAs; Pluripotent Stem Cells; Protein Binding; Protein Multimerization; RNA, Messenger; Receptors, Retinoic Acid; Retinoid X Receptors; Signal Transduction; Tretinoin, Leukemia, Myeloid, Acute, MicroRNAs, Retinoid X Receptors, Gene Expression Regulation, Humans, RNA, Messenger, Protein Multimerization, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!