Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.waterboar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.waterboards.ca.gov/...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hydrobiologia
Article . 1999 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biogeochemical nutrient cycles and nutrient management strategies

Authors: Conley, D. J.;

Biogeochemical nutrient cycles and nutrient management strategies

Abstract

Nutrient loading by riverine input into estuarine systems has increased by 6–50 times for the N load from pristine conditions to present, whereas a 18–180 times increase has been observed in the P load. Reductions in the ratio of N to P delivery has also occurred with time. In a review of nutrient limitation in estuarine systems, it is shown that many estuarine systems display P limitation in the spring, switching to N limitation in the summer with some estuaries displaying dissolved silicate limitation of the spring diatom bloom. Historical and recent changes in nutrient loading and their effect on nutrient limitation have intensified the debate on the control of nutrient delivery to estuaries from both agricultural and point sources, and as to what nutrient (N or P) should be managed for in estuarine systems. It is hypothesized that potential reductions in P may help oxygen depletion especially in deep estuaries and reduce fast growing macrophytes such as Ulva sp., although P reductions probably will have little effect on summer chlorophyll concentrations, an important recreational management goal. Reductions in N loading should reduce summer chlorophyll concentrations and improve the conditions for submerged aquatic vegetation and thus improve ecosystem functioning. Finally, if only P reductions are pursued, that is if we are able to reduce P such that it is limiting year around in estuarine systems, it is likely that the export of N from estuarine systems would increase to the bordering N-limited marine systems, thus only exporting the problem of enhanced production with eutrophication.

Keywords

nutrient limitation, eutrophication, silicate, phosporous, nitrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    320
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
320
Top 1%
Top 1%
Top 10%