<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In recent years very massive single stars have been found to be upward of 90 M⊙. Massive contact binary systems have been found among the early-type systems, but their masses are far less than those reported for single stars. The most massive component found is about 60 M⊙.It is generally believed that no late-type very massive stars have been detected (Humphreys and Davidson). This may be due to the large amount of mass loss from stellar wind. Recently, several extremely long-period late-type binary systems have been found to be contact systems. Two systems, UU Cnc and 5 Cet, have their primary components with masses exceeding 40 M⊙, and K spectra. This result tends to suggest that close or interacting binary stars may be able to preserve the mass loss from stellar wind within the binary systems.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |