<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Introduction.—The dominant subject in the analysis of dynamical systems is the stability of the insuing motion. Many fields of interest under current research involve dynamical systems. These range from fields such as astrodynamics, meteorology, and control systems to biology, chemistry, medicine, and economics. In each of these fields dynamical systems can be formulated, and their stability can be examined as special cases of stability problems in dynamics. During recent years the stability concepts of dynamical systems have been advanced, either by modifying old ideas or by creating new stability concepts. These advances permit a deeper penetration into the more profound stability problems.
ordinary differential equations
ordinary differential equations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |