Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1996 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/bfb010...
Part of book or chapter of book . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Introduction to Photonic Crystals

Authors: John D. Joannopoulos;

An Introduction to Photonic Crystals

Abstract

During the past five years, there has emerged a new class of materials called photonic band gap materials or, more simply, photonic crystals. The underlying concept behind these materials stems from early notions by Yablonovitch [1] and John [2]. In a nutshell, the basic idea is to design materials so they can effect the properties of photons in much the same way ordinary solids or crystals effect the properties of electrons. Now, the properties of electrons are governed by Schroedinger’s equation $$ \left\{ { - \frac{{{{\nabla }^{2}}}}{2} + V(r)} \right\}\psi (r) = E\psi (r) $$ (1) and properties of photons by Maxwell’s equations, which can be cast in a form very reminiscent of the Schroedinger equation, $$ \left\{ {\nabla \times \frac{1}{{\varepsilon (r)}}\nabla \times } \right\}H(r) = {{\omega }^{2}}H(r) $$ (2) .

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 1%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?