
In pneumatic conveying, particles are generally in suspension in a turbulent gas stream. The question of drag on a single particle, and the effects of Reynolds number, particle shape and roughness, voidage, turbulence intensity and scale of turbulence, acceleration, etc. on drag are relevant to pneumatic conveying. These factors will be discussed in this chapter. Equations for calculating important properties such as drag coefficient, terminal velocity, minimum fluidization velocity, and the equation for flow through a packed bed are presented. The characteristics of a powder in terms of its fluidization behaviour are relevant to pneumatic conveying, and will also be discussed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
