Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2012 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GAPDH, as a Virulence Factor

Authors: Norbert W, Seidler;

GAPDH, as a Virulence Factor

Abstract

Pathogens, such as bacteria, viruses, protozoa and fungi, generate molecules that provide them with a selective advantage, often at the expense of the host. These molecules, or virulence factors, enable pathogens to colonize the host through several mechanisms. Some molecules offer the pathogen an advantage through better adhesion to host tissues, or superior invasive capability. Some allow the pathogen to evade or suppress the host's immune system. Some molecules enable intracellular parasites to disable cytoprotective mechansims, by re-directing the host phagocytic vesicles. Many of these molecules are proteins that are exported to the cell's surface or are secreted. As unlikely as it seems, GAPDH appears to play a role as a virulence factor in a number of pathogenic organisms by the mechanisms just described. This highly conserved protein is found on the outer surface or as a secretory product of these organisms. The process by which pathogenic GAPDH, which has >40 % sequence identity to human GAPDH, is exported and attached to the outer surface of cells remains unknown. This chapter also presents a previously unpublished proposed docking sequence on GAPDH. There is also discussion of the potential of using the antigenic properties of pathogenic GAPDH for medical as well as for veterinary purposes.

Keywords

Bacteria, Virulence Factors, Fungi, Glyceraldehyde-3-Phosphate Dehydrogenases, Humans, Antigens

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!