Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNA Nanotechnology

Authors: Ofer I, Wilner; Bilha, Willner; Itamar, Willner;

DNA Nanotechnology

Abstract

The base sequence encoded in nucleic acids yields significant structural and functional properties into the biopolymer. The resulting nucleic acid nanostructures provide the basis for the rapidly developing area of DNA nanotechnology. Advances in this field will be exemplified by discussing the following topics: (i) Hemin/G-quadruplex DNA nanostructures exhibit unique electrocatalytic, chemiluminescence and photophysical properties. Their integration with electrode surfaces or semiconductor quantum dots enables the development of new electrochemical or optical bioanalytical platforms for sensing DNA. (ii) The encoding of structural information into DNA enables the activation of autonomous replication processes that enable the ultrasensitive detection of DNA. (iii) By the appropriate design of DNA nanostructures, functional DNA machines, acting as "tweezers", "walkers" and "stepper" systems, can be tailored. (iv) The self-assembly of nucleic acid nanostructures (nanowires, strips, nanotubes) allows the programmed positioning of proteins on the DNA templates and the activation of enzyme cascades.

Related Organizations
Keywords

Models, Molecular, Adenosine Triphosphate, Quantum Dots, Nanotechnology, Nucleic Acid Conformation, Luminol, Biosensing Techniques, DNA, DNA-Directed DNA Polymerase, Nanostructures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!