
handle: 11577/2375315 , 11577/2373741
In this paper a general model for the analysis of concrete as multiphase porous material, obtained from microscopic scale by applying the so-called Hybrid Mixture Theory, is presented. The final formulation of the governing equations at macro-level is obtained by upscaling their local form from the micro-scale. This procedure allows for taking into account both bulk phases and interfaces of the multiphase system, to define several quantities used in the model and to obtain some thermodynamic restrictions imposed on the evolution equations describing the material deterioration. Two specific forms of the general model adapted to the case of concrete structures under fire and to the case of concrete degradation due to the leaching process are shown. Some numerical simulations aimed at proving the validity of the approach adopted, are also presented and discussed.
Multiscale; multiphysics; leaching; concrete; high temperature
Multiscale; multiphysics; leaching; concrete; high temperature
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
