Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stress, Mutators, Mutations and Stress Resistance

Authors: Avraham A. Levy; Jonathan Gressel;

Stress, Mutators, Mutations and Stress Resistance

Abstract

Organisms need genetic mechanisms to rapidly adapt to changing, stressful environments. Having a high mutation frequency would have a drag on a population due to the deleterious nature of mutations, but having a sub-population with high mutation rate due to the presence of mutator genes seems to be nature’s solution. Far more is known about mutator genes in bacteria than in higher organisms. Mutator effects can be genetic, through mutations in genes that affect genome stability or it can be epigenetic through up- or down-regulation of these genes. The mutator genes can be genes with partially lost function, which deal with DNA replication or repair, or with detoxification of DNA-damaging cellular components. Transposons, which are sensitive to environmental stress, can also act as mutators in plants. Mutators can be constitutive or stress-induced. Most evidence for mutator-assisted evolution of stress resistance in plants is circumstantial, except for the evolution of atrazine herbicide resistance due to a nuclearly-inherited plastome mutator, which was repeated experimentally. An important feature of the mutator effect is that it is transient and is followed by reversion to the stable wild type, and can be counter-selected following outcrossing with the wild type. Similarly, “remembered” epigenetic stress-induced mutator effects were shown to last for a few generations. In summary, mutator genes could be playing an important role in the evolution of resistance to stress in plants, as it does in other systems, but to an extent that is yet unclear.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!