
In this paper, we develop a theory of bulk quantum computations such as NMR (Nuclear Magnetic Resonance) quantum computations. For this purpose, we first define bulk quantum Turing machines (BQTMs for short) as a model of bulk quantum computation. Then, we define complexity classes EBQP, BBQP and ZBQP as counterparts of the quantum complexity classes EQP, BQP and ZQP, respectively, and show that EBQP=EQP, BBQP=BQP, and ZBQP=ZQP. This implies that BQTMs are polynomially related to ordinary QTMs as long as they are used to solve decision problems. We also show that these two types of QTMs are also polynomially related when they solve a function problem which has a unique solution. Furthermore, we show that BQTMs can solve certain instances of NP-complete problems efficiently.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
