Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Epidemiology

Authors: Mackay, Ian M.; Arden, Katherine; Lambert, Stephen B.;
Abstract

The common cold is the result of an upper respiratory tract infection causing an acute syndrome characterised by a combination of non-specific symptoms, including sore throat, cough, fever, rhinorrhoea, malaise, headache, and myalgia. Respiratory viruses, alone or in combination, are the most common cause. The course f illness can be complicated by bacterial agents, causing pharyngitis or sinusitis, but the are a rare cause of cold and flu-like illnesses (CFLIs). Our understanding of CFLI epidemiology has been enhanced by molecular detection methods, particularly polymerase chain reaction (PCR) testing. PCR has not only improved detection of previously known viruses, but within the last decade has resulted in the detection of many divergent novel respiratory virus species. Human rhinovirus (HRV) infections cause nearly all CFLIs and they can be responsible for asthma and chronic obstructive pulmonary disease exacerbations. HRVs are co-detected with other respiratory viruses in statistically significant patterns, with HRVs occurring in the lowest proportion of co-detections, compared to most other respiratory viruses. Some recently identified rhinoviruses may populate an entirely new putative HRV species; HRV C. Further work is required to confirm a causal role for these newly identified viruses in CFLIs. The burden of illness associated with CFLIs is poorly documented, but where data are available, the impact of CFLIs is considerable. Individual infections, although they do not commonly result in more severe respiratory tract illness, are associated with substantial direct and indirect resource use. The product of frequency and burden for CFLIs is likely to be greater in magnitude than for any other respiratory syndrome, but further work is required to document this. Our understanding of the viral causes of CLFIs, although incomplete, has improved in recent years. Documenting burden is also an important step in progress towards improved control and management of these illnesses.

Country
Australia
Keywords

human rhinovirus, 572, 060506 Virology, Polymerase-chain-reaction, Reverse transcription-pcr, Invasive pneumococcal disease, Respiratory syncytial virus, HRV C, Article, 060501 Bacteriology, Pcr, 920115 Respiratory System and Diseases (incl. Asthma), CFLIs, Real-time pcr, B1, Respiratory syndrome virus, 060502 Infectious Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities