Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2010 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Inhalation toxicology

Authors: Hayes, Amanda; Bakand, Shahnaz;

Inhalation toxicology

Abstract

Inhalation of gases, vapors and aerosols can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. The large number of chemicals and complex mixtures present in indoor and outdoor air coupled with the introduction of new materials such as nanoparticles and nanofibers, is an area of growing concern for human health. Animal-based assays have been used to study the toxic effects of chemicals for many years. However, even so, very little is known about the potential toxicity of the vast majority of inhaled chemicals. As well as new or refined OECD test guidelines, continuing scientific developments are needed to improve the process of safety evaluation for the vast number of chemicals and inhaled materials. Although studying the toxic effects of inhaled chemicals is more challenging, promising in vitro exposure techniques have been recently developed that offer new possibilities to test biological activities of inhaled chemicals under biphasic conditions at the air liquid interface. This chapter gives an overview of inhalation toxicology as well as focusing on the potential application of in vitro methods for toxicity testing of airborne pollutants.

Country
Australia
Related Organizations
Keywords

Aerosols, inhalation, Air Pollutants, Inhalation Exposure, Respiratory System, Complex Mixtures, Social and Behavioral Sciences, Risk Assessment, Education, Toxicity Tests, Animals, Humans, Nanoparticles, Gases, toxicology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!