<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.14243/139004
Thin films1 possess two radically distinct typical scales associated with their transverse and their longitudinal dimensions. Two distinct dynamics are thus associated to these length scales: transverse or longitudinal dispersive waves linked to the film thickness, and longitudinal quasi-two-dimensional (2D) motion scaling on the film length. The physics of both waves and 2D motion are studied here. The response of a film to a localized impulse is computed, and the behaviour is interpreted in the light of group-velocity notions. When air is blown on the film, the waves turn into instability modes, as demonstrated by a simple pressure argument in the limit of small density ratios. The different behavior observed in the case of a water jet and in the case of air blowing on a film is explained by introducing the equivalent of group velocity for instability waves, which naturally leads to discriminate between the absolute and the convective type of instability. In the long-wave limit, waves become similar to the elastic waves propagating on a stretched membrane. In recent experiments, Couder [7] and Gharib [13] use soap films as a two-dimensional fluid. In the present paper, we show that the necessary condition for the film to comply to Navier-Stokes equations is that the typical flow velocity be small compared to the Marangoni elastic wave velocity.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |