<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We describe representation, inference strategies, and control procedures employed in an automated conversation system named the Bayesian Receptionist. The prototype is focused on the domain of dialog about goals typically handled by receptionists at the front desks of buildings on the Microsoft corporate campus. The system employs a set of Bayesian user models to interpret the goals of speakers given evidence gleaned from a natural language parse of their utterances. Beyond linguistic features, the domain models take into consideration contextual evidence, including visual findings. We discuss key principles of conversational actions under uncertainty and the overall architecture of the system, highlighting the use of a hierarchy of Bayesian models at different levels of detail, the use of value of information to control question asking, and application of expected utility to control progression and backtracking in conversation.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |