Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient Dependent Fatigue Limit Criterion

Authors: V. P. Panoskaltsis;

Gradient Dependent Fatigue Limit Criterion

Abstract

Experimental evidence has shown that the fatigue limit of metallic cylindrical specimens in fully reversed bending is significantly higher than the respective limit in fully reversed tension-compression. The higher values of the bending fatigue limits observed have to be attributed to the benign influence of the gradient of the bending normal stress on the fatigue strength of the metal. Although many approaches for modelling the gradient effect under uniaxial normal cyclic stress have already been tried, attempts to model the very same problem under multiaxial cyclic stress systems are scarce. The present paper starts re-analyzing existing experimental results under cyclic normal stress (i.e. bending, tension-compression) and under cyclic shear stress (i.e. torsion). This closer examination shows that, although the fatigue srength at very high lives is strongly affected by the gradient of the normal stress in bending tests, it remains insensitive to variations of the gradient of the shear stress in torsion tests. Based on these observations, a gradient dependent multiaxial high-cycle fatigue criterion function of the stress invariants is formulated.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!